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Method of correlated basis functions and FHNC theory 

P Hatzikonstantinou and J M Irvine 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 7 September 1981 

Abstract. A method for the accurate evaluation of the diagonal and off-diagonal matrix 
elements of the Hamiltonian operator within the correlated basis function scheme is 
presented. Considering a basis consisting of Slater determinants correlated with a Jastrow 
correlation factor, the expectation value of the kinetic energy operator has been expressed 
in the Jackson-Feenberg form. A diagrammatic analysis is presented for the construction 
and evaluation of the cluster expansions of the required quantities incorporating the Fermi 
hypernetted chain theory. 

1. Introduction 

The correlated basis functions (CBF) seem to provide a particularly powerful means 
of studying a strongly interacting system, where special long-range correlations are 
present. The method has been applied by Clark and coworkers (Clark el a1 1979, 
Clark and Westhaus 1966 (cw)) to describe weak state-dependent correlations, which 
are entirely due to the antisymmetry of the wavefunctions of the system and not to 
the short-range (state-independent) correlation operators. More recently Krotscheck 
and Clark (KC 1979) have formulated a scheme to evaluate certain quantities incor- 
porating the Fermi hypernetted chain (FHNC) approximation which permits an exten- 
sive collection and resummation of cluster diagrams. They have considered a state- 
independent correlation function and their analysis is based on the Clark-Westhaus 
(cw, Clark 1979) form for the ground-state energy expectation value. 

The present work is devoted to the derivation and analysis of a graphical scheme, 
incorporating the FHNC approximation, for the evaluation of certain quantities which 
are expressed in terms of diagonal and non-diagonal matrix elements of the Hamil- 
tonian operator within the CBF method. Using normalised but non-orthogonal 
wavefunctions employing a Jastrow correlation factor, we express the expectation 
value of the kinetic energy in the Jackson-Feenberg (JF) (Clark 1979) form. Our 
scheme compared with that of KC does not include terms depending on a three-body 
effective interaction, so that the main contribution to the energy comes from terms 
depending on a two-body effective interaction, and consequently we can evaluate the 
required quantities more easily than KC within a FHNC approximation which maintains 
the Fermi cancellation, keeping terms which incorporate non-local effective potentials. 

Let us consider an infinitely extended Fermion system with a finite density p = 
vk:/6x2, v being the spin-isospin degeneracy factor. Then a set of non-orthogonal 
trial wavefunctions is constructed in the form 

(1.1) 
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1716 P Hatzikonstantinou and J M Irvine 

where the Jastrow correlation operator F and the complete set 4m of Slater deter- 
minants are defined as follows: 

(1 .2)  

4m = W!)-*”Im1,  m2,.  , . , m d o ,  m = { m l ,  M Z , .  . . , mA}.  (1 .3)  

The a means ‘antisymmetrised’. Each mi signifies a distinct collection of single-particle 
quantum numbers. The uncorrelated ground state is defined as 40 = 4~ where 0 = 
{01,02,. . . , O A }  corresponds to the Fermi sea. The system is described by a Hamil- 
tonian with the configuration space form 

where t ( i )  = - ( h 2 / 2 m ) V f  with 

(1.5) 

The expectation values of the Hamiltonian and unit operators with respect to the 

H m n  = hmn/[ImmInn11’2, ( 1  - 6 )  

N E ! ,  = ~ m n / [ ~ m m ~ n n I ” ~ ,  (1.7) 

h m n  (4mIF+HFI4n)y I m n  = ( 4 m l F + F l 4 n ) .  (1.8) 

Since momentum conservation implies that Hmn and NE!, vanish unless C, km, = 
X, kn, it is evident that matrix elements using sets m and n which differ only in one 
single-particle state are zero. Hence in the case of a state-independent potential our 
simplest choice is to assume configurations which differ only in two states. The 
sequence of states can be arranged such that m l  f n r ,  n2; m2 f n l ,  n2 and m, = n, for 
i > 2. Either of the sets m, n may coincide with the set 0. The matrix elements Hmn 
and NE!, have certain symmetries that are Hermitian and are invariant under a unitary 
transformation of the model functions 4m, 4,,. 

Quantities which are going to be evaluated in full analogy with the evaluation of 
the ground-state energy are: 

(i) the diagonal expressions 

( 1 )  = ( m , ~ r ( i ) ~ m , )  = h 2 k i r / 2 m  

and V(i j )  is a two-body state-independent potential. 

normalised wavefunctions (1.1) are given by 

where 

G“ - Gnn =In I,, -In Inn, (1.9) 

(1.10) 

with TT = E i c : :  and Gmm(P)= ln  I“@); 

(ii) the off -diagonal matrix elements 

W m n  = H m n  - t ( H m m  +Hnn)Nmn. ( 1 )  (1.11) 

The generalised normalisation integral Imn (0) is given by 
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2. General formalism 

The kinetic energy contribution to the expectation value of h,,/Z,, is given by 

( -vf> = (4mIF(-V?)Fl4n)* 

Equation (2.2) can be written in two alternative forms 

(-Vf),,= -$I F24:V?4, dr+Hc+14:4,(V,F)2dr 

and 

(2.3) 

(-V:)= I Vi(F4*,)Vi(F4,) d r  = (F2Vi4*,V4, -4*,4,,FV:F) d7 (2.4) I 
or alternatively 

where d r  represents the 3N-dimensional volume element dr l  dr2 . . . dr,. Equations 
(2.3) and (2.5) correspond to the c w  and CF (Clark-Feenberg) forms for the kinetic 
energy respectively. Taking the average of (2.3) and (2.5), we arrive at the JF form 
for the kinetic energy 

Using equations (1.8) and (2.6) we finally arrive at the expression 

The operator V: acts only upon the functions 4, and 4:. The non-diagonal matrix 
elements of the single-particle distribution function g,, ( r , )  are defined by 

pgmn(rl) = NZi!, J 4:4,F2 dr2 dr3 . . . drN. 

Equation (2.7) can be re-expressed as 

a &= $(T: + T:) +- In Zmn(P)Ip=o 
Zmn aP 

where the generalised normalisation integral I,, ( P )  is defined by 

I m n  ( P I  = nmn (P )exp( P w2A 13 nmn(P)=(4mIF exp(PV*)FI&). 

(2.10) 

(2.1 1) 



1718 P Hatzikonstantinou and J M Irvine 

Using the definition (1.7) we can write 

~ ! 2  ( P I  = N m n  ( P I  e x p W  w;!, - 1( w!k + W;!! )I}, (2.12) 

(2.13) N m n  ( P I  = nmn (P  )[nmm ( P  In,,, (P  )I-”*, 
with N:!, = N t ! ,  (0) = ““(0). 

in terms of cluster expansions of I,, ( p )  and ZVtL ( p ) .  
Using the above definitions for I,, ( p )  we can evaluate all the required quantities 

3. FHNC theory and matrix elements of the unit operator 

The matrix elements which are involved in the CBF method are expressed in a series 
of cluster terms represented by diagrams which can be resummed within the FHNC 

approximation. In the FHNC procedure a set of quantities is constructed, each one of 
which represents an infinite partial summation of cluster terms, and their evaluation 
is performed by means of integral equations. 

-- V 2 P  

Figure 1. The simplest elements used in the construction of the diagrammatic representa- 
tion of the cluster terms. The function in parentheses indicates the bare correlation line 
h ( r ) .  

In this section we review the main definitions and the diagrammatic notation which 

A diagram is constructed using a number of dynamical (broken) and exchange 

(3.1) h b t f )  = f 2 ( r t , ) -  1 and v &br t , )  = j l ( b r t , ) / & r r f  

respectively. The lines end in open and full dots which are called external and internal 
points respectively. The exchange lines form closed loops each one of which introduces 

are compatible with those developed in the articles of KC and Clark (1979). 

(full) lines which represent factors 
- 1  
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a factor -v. An open dot indicates a dependence on the particle coordinates represen- 
ted and a full dot represents an integration over the dummy coordinates of a particle 
accompanied by a density factor p .  

Important quantities involved io our analysis are constructed by series connection 
of diagrams which contribute to the two-body distribution function g(r12) evaluated 
with the 'ground-state' wavefunction of the form $o = F&. Accordingly we consider 
the sum of diagrams T a b  with ab = dd, de and ee signifying whether none, one or two 
exchange lines are attached to its external points. The sum Tab is decomposed into 
the sum Nab of nodal and the sum x a b  of non-nodal diagrams. The function hd(r12) = 
rdd(rl2) is determined by the set of coupled equations 

hd(r) =f2(r)  exp[Ndd(r)+Edd(r)l- 1, 

fidd (k = i d ( k  ){ 1 - [ 1 - *de (k )I2/[ 1 + (1 + *ee (k ))Ld(k )I}* (3.2) 

where E d d  is the sum of the elementary diagrams (representing non-nodal diagrams 
which do not decompose into two or more independent factors). The tilde denotes 
the Fourier transform following the notation 

A ( k )  = p A(r)  ellrr dr, (3.3) I 
The set of FHNC equations (3.2) may be solved following a sequence of successive 
approximations beginning with Edd = 0. The sets &e and Xee are evaluated either by 
successive truncation of their cluster series within the KR-FHNC scheme (Krotscheck 
and Ristig 1975, Krotscheck 1977) or by means of the additional set of four coupled 
nonlinear integral equations within the FR-FHNC scheme (Fantoni and Rosati 1975). 
An alternative method to obtain the sets hd and Ndd is to solve the equations (3.2) 
in conjunction with a variationally obtained Euler-Lagrange equation or system of 
equations within an optimisation scheme which minimises the ground-state energy 
(Owen 1979b, Lantto and Siemens 1977). Of course the function hd(r) may be 
evaluated by truncating its cluster expansion or by means of the Percus-Yevick integral. 

In figure 2 ( a )  the leading graphs of hd(r) are shown. The process of the systematic 
resummation of diagrams is further extended by replacing each bare correlation line 
h(r)  by the dressed correlation line hd(r). Before proceeding to our analysis we review 
the evaluation of certain quantities within the CBF scheme, following the technique 
developed by KC. 

An observation shows that the diagrammatic contributions to the diagonal matrix 
elements 

G""(0) = W 4 m  IFFI4m) (3.4) 

are generated from the diagrams of the generating function Go0(O) by substituting for 
the Slater function l(kFr,,) its generalised form 

N 
lm(r2,) = N - '  1 exp(ikm, * rt,) (3.5) 

where k,, are the associated wavevectors with the set of orbitals m. Hence, neglecting 
terms of order N - ' ,  the difference Gmm(0)-G""(O) is expanded in cluster terms 
containing at most one of the single-particle states m l ,  m2,  n l  and n 2  so that 

(3.6) 

1 = 1  

Gmm (0) - G"" (0) = SG(m 1 )  + SG(m2) - SG(nl) - SG(n2) 
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with 

(3.7) 

The diagrammatic expansion of SG(m,) is obtained from the graphical expansion 
of Goo(0) by removing, in turn, each exchange line I ( k ~ r , ~ )  and converting the pair of 

e----? e Q '  
I I 

I 
I 
I I I 

I 
I I I 

I I 

b 6 & - - - A  b b 

k"ax \ I I 

Figure 2. (a)  All contributions to hd(r12)=rdd(r12)  with no more than three correlation 
lines and four points. ( b )  and ( c )  represent all contributions to 6G(rI2) and Xcc(r12) 
respectively with no more than two dressed correlation lines and four points. 
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points i, j to external points. Before starting the construction of SG(m1) the function 
Goo(0) is expanded using the I Y  method or the PS method (Clark 1979) after the 
collection of all 'equivalent' diagrams, in order to avoid complications arising from 
the sums over the single-particle states. 

The process of series connection of diagrams yields the expression 

SG(m,) = -ln[l -J?cc(kml)] (3.8) 

where zcC(kml) is the Fourier transform of the function Xcc(r)  which is constructed 
from the function v- l l (kFr12) ,  by adding the sum of the non-nodal contributions to 
g ( r ) ,  with a single exchange line joining its external points. The sum Xcc(r)  is defined 
by the set of coupled FHNC equations 

Xcc(r)  = hd(r)[Ncc(r)+Ecc(r)-  v - l l ( k F r ) I + ~ , ( r )  

f i c c ( k )  = [ 2 c c ( k ) -  v- l&k)Hcc(k) / ( l  - Z c c ( k ) ) ,  
(3.9) 

where v - l [ ( k )  = 8(kF-k)  is the Heaviside unit step function. Again an approximate 
solution of the equations (3.9) is obtained by setting Ecc(r)  = 0. The first few diagrams 
of Goo(0) ,  SG(r) and Xcc(r)  with no more than two correlation lines are shown in 
figures 3, 2(b), and 2 ( c )  respectively. 

V \ 

Figure 3. Diagrams which contribute to Go"(0) with no more than three dressed correlation 
lines and four points. 

The off-diagonal matrix elements of the unit operator N,, may be written 

N m n  E N m n  (0 )  = C ) Y ) t  

S. 1 

(3.10) 

( N m n ) Y ' =  c ( m ~ m d l ) .  . . j b - 2 ) I D h 9 .  . . , rP) lA(nln*j ( l ) . .  . j ( p - - 2 ) ) .  (3.11) 

The indices s = p + 2 and t stand for the number of particles (points) and the number 
of dynamical lines hd with 1 S i, j s p respectively. The function D ( r i .  . . rp )  is a product 
of the functions hd. 

i l l )  ... j l  P )  
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Following the KC analysis for the shifting of the orbitals n 1, n 2  out of the permutation 

N m n  = (mlmzlN(12; 1’2’)lnln2), (3.12) 

operator A, equation (3.10) can be expressed in the ‘dressed form’ 

where a factorisation of the non-local operator N(12; 1’2‘) leads to the relation 

where 

ND(12; 1’2r) = N?d (12; 1’2’) + N?,, (12; 1‘2‘) + N?cc (21 ; 2r1’) +NE.,, (12; 1’2’) 

+ (2 1 ; 1’27, 

N?d (12; 1’2’) = N %  (1, 2)S(rl - rl~)S(r2 - r2~)Srrlrr,.S02n2., 

Nee,,, (12; 1’2’) = Nee.,, (rl, r2; r’l, r;  ) ~ r r l r r J r r 2 v 2 . .  

The local portion of ND(12; 1’2’) is determined to be N?d(r12)  = hd(r12). 
Within the above representation of N,, the reducibility and irreducibility are 

defined as follows. 
A diagrammatic contribution to N,, is defined as reducible if it may be factorised 

(non-trivially) in such a way that at least one of the factors depends on only one of 
the state labels m l ,  m2, n l ,  n2. 

A diagram is defined as basic if it is irreducible and does contain proper i-j 
subdiagrams with exchange lines attached to i or 1 or both, except the single correlation 
line. 

The leading diagrams of the non-local parts (v/p)N%(l2;  1’2’) and 
(~ /p)~N,q . , ,  (12; 1’2’) are shown in figure 4 by the sets ( a )  and ( b )  respectively. More 
precisely, considering that the broken line represents the ‘dressed’ correlation factor 
hd(r i i ) ,  the former function above sums all the basic diagrams with three external 
points 1, l‘, 2 and an exchange line connecting the points 1 and 1’. There is no 
exchange line which ends on the point 2. The latter function sums all the basic 
diagrams having four external points 1, l’, 2, 2’ with exchange lines connecting the 
pairs of points 1, 1’ and 2, 2’. If the broken line represents a simple correlation 
function instead of the dressed bond function hd(rii), the word ‘basic’ must be replaced 
by the word ‘irreducible’ in the definitions of the non-local portions of ND(12; 1’2’). 
In the case where m l  + nl  or m l  + n2 a number of diagrams cancel out (figure 4(c)). 

In the thermodynamic limit with fixed density the ‘diagonal’ G functions are 
proportional to N and the quantity N,, behaves like N-’. 

(3.14) 
NdDcc (12; 1’27 = NdDcc (ri, r2; r’l, r ;  )6(r2-r2.)Sol~i.S~,2a2., 

D D 

4. Matrix elements of the Hamiltonian 

In this section we will study the evaluation of the diagonal and non-diagonal matrix 
elements of the Hamiltonian within a Fermi hypernetted chain approximation scheme, 
which consistently preserves the Fermi cancellation effects. As we have mentioned 
in $1, our diagrammatical analysis is based on the Jackson-Feenberg form for the 
kinetic energy. In the graphical representation of the terms which contribute to the 
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l b )  

1 '  

Figure 4. (0) and ( b )  'asymmetrical' diagrammatic contributions to (u /p )N:< ,  ( 1  2; 1'2) 
and ( U / ~ ) ~ N ~ , , ,  (12; 1'2') respectively with no more than two dressed correlation lines. 
The full function (u/p)Nd",,(12; 1'2) is obtained by averaging over the diagrams shown 
in the figure plus those obtained from the latter by exchanging the coordinates 1 and 1'. 
The full function ( U / ~ ) ~ N ~ , , ,  (12; 1'2') is obtained as above by exchanging the coordinate 
pairs ( 1 ,  1')  and (2 ,2') ,  ( 1 ,  2) and (1'2'). and both. (c )  Example of diagrams which cancel 
for m l + n l  or ml+n2. 

matrix elements the broken line represents the dressed correlation function hd(r )  
rather than the bare correlation h ( r ) .  

We begin the study of the diagonal matrix elements of the Hamiltonian, expressing 
the generating functions G, in terms which represent compound diagrammatic sums. 

From (1.9) and (2.11) we obtain 

G"(p) = GT"'(p)+pW$!,, (4.1) 

defining 

GTm(p)  =In n,,(P),  G""(0) = G,""(O). (4.2) 

H,,-H,, = T ; . ' - T ~ + u ( m l ) + u ( m z ) - u ( n l ) - u ( n z ) + W ~ t n - W ' n ' n '  (4.3) 

(4.4) 

The diagonal quantities W"' are defined by (2.8) with m = n. The prime denotes a 
derivative with respect to p. 

Considering the relations (3.6) and (3.7), equation (1.10) takes the form 

where 

U (m 1 = *L ( m  I /  ( 1 - kcc (m 1). 
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In order to evaluate the difference W!,!; - W!,: we write (in the thermodynamic 
limit) 

(4.5) 

where the diagonal ' g2 ( r12 ) '  functions represent the two-body distribution function. 
The difference under the integration can be written 

= [SG'(ml, P)+SG'(m2,  P)-SG'(nl,  P)-SG'(n2, P ) l l p = ~ .  (4.6) 

Here f ( r )  is redefined as f(r, p )  = f ( r )  exp[$KJ2(r)] and KJAij) = 
S(rl  - r : )S(r2  - r : )  + S(rl - r : )S(r2  - r : ) .  The graphical contributions to the distribution 
functions g F m ( r )  and g ; " ( r )  are obtained from the diagrammatic expansion of the 
quantities SG'(m, p )  by means of equation (3.7). 

Some of the leading contributions to SG' (m,P) l s=~ can be obtained from the 
diagrams of SG(r12), which have been shown in figure 2(b), adding a line which 
represents the plane wave factor l ( k ,  r12) = exp(ik, r12). 

Substituting (4.6) into (4.5), we may write 

w!,!!,, - w!,: = w"' (ml) + ~ " ' ( m ~ )  - ~ " ' ( n ~ )  - w"'(n2) (4.7) 

where W"'(m) is defined by the right-hand side of equation (4.5) after the replacement 
of the quantity within the brackets by SG'(m). 

We return now to the evaluation of (4.5). The diagrammatic decomposition of 
the quantities W"'(m) may be obtained as follows. We take all diagrams contributing 
to SG'(m) and replace, in turn, each exchange line I(kFr1l) and wavefactor l ( k ,  * rI2) 
by V:l(kFrl,) and V:l(k, rI2) respectively. In addition we replace, in turn, each 
connectedpairoflines~(kFr,,)/(km r12)  by2Vlf(kFrlI) * V l l ( k m  rI2). Theleastcompli- 
cated diagrams are shown in figure 5 .  We have included all the diagrams with no 
more than two dressed correlation lines. In figure 1 we present the basic elements 
which are used in the construction of diagrams. 

The contributions to R:, (m) are obtained by replacing in turn each correlation 
line in the diagrammatic representation of & ( m )  by an effective interaction w~( i j )  line. 

For the evaluation of the primed quantities it is more convenient to use the dressed 
effective potential hL(r)  rather than the bare w2(r) in conjunction with the term hd(r )  
instead of h ( r ) .  The physical concept of the dressed functions, which are used in our 
expressions, is that they incorporate the effects which appear in the presence of the 
medium. 

Constructing the function h d ( r ,  p )  from h d ( r ) ,  redefining f 2 ( r )  as f2 ( r ,  0) = 
f ( r )  exp[+pwz(r)] and obtaining the p derivative of (3.2), we arrive at the set of coupled 
equations 

h& ( r )  = [ h d ( r )  -t 1][W2(r) + N & d  ( r )  + E & d ( r ) 1 ,  
(4.8) 

s&d(k)=L;(k)[ l - (  1 - F ( k )  - )'I+ Z d d ( k )  (2*A(k) + *dd(k)2Zbe - ( k )  
1 - x d e ( k )  1 - x d , ( k )  1 -R&,(k) 
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Figure 5. All the diagrams which contribute to W"'(k )  ( k  = k,,,,) with no more than two 
dressed correlation lines. 

(4.9) 

(4.10) 

The sums h&) and f idd(k)  are defined by the equations (3.2). The quantities *de, 

RI,, gee and E i d ( r )  are determined either by keeping the leading terms in suitable 
diagrammatic expansions or by means of additional integral equations within a FR- 
FHNC or a variational scheme (Owen 1979b). In a first approximation a simple solution 
of the set of coupled equations (4.8) is obtained neglecting the sum of the elementary 
diagrams Edd(r) because of their complexity and setting & d ( f )  = 0. 

Finally the p derivatives of the equations (3.9) lead to the set of coupled linear 
equations 

Again for a simple solution of these equations we set ECE and E:, zero. 
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The off-diagonal matrix elements of the Hamiltonian H,, contribute in the evalu- 

Introducing the normalising denominators into equation (2.  lo), we obtain 
ation of the quantity W,, which is defined by the equation ( 1 . 1 1 ) .  

( I m n  ( P I  + Z Z  ( P I ) .  (4.12) H,, = ;( T p  + TF)NE!, + $Zmm (O)Z,, (O)]- 

Using the definitions of the diagonal matrix elements of the Hamiltonian and substitut- 
ing the equations (2.11) and (4.12) into (1 .11 )  yields 

112 a 
ap 

(4.13) a a 
ap ap 

Wmn = -NE: (p  1 10 = 0 = - N m n  ( p  10 = 0 + N m n  (O)[ Wc!, - t(  W' m m  I )  + w!t; 11 

where 

(4.14) 

and p indicates that each factor f ( r )  has been replaced by f ( r ,  P )  = f ( r )  exp[tPWr)].  
We obtain by virtue of equation (2.13) 

W,, ( 1 )  = - N i L  h2 (0) I V:Nh, (p) lO=O dr2drl  +;(WE!, + W!:: 1, (4.15) 
8m 

hence equation (4.13) may be rewritten 

(4.16) 

The above equation indicates that the graphical representation of W,,, can be 
derived in a similar way to that for N , , ( p ) ,  when the diagrammatic expansion of 
""(0) is given. 

The diagrams which contribute to the quantity W,, are obtained from N,, (0) in 
the following way. The contributions to W,, from the first term of (4.16) are obtained 
by taking all the diagrams which contribute to N,,(O) and replacing in turn each 
correlation line h ( r )  in a diagram by the effective interaction line w2(r) .  The graphical 
representation of the p derivative of N , , ( p )  under the integration has the same 
structure as that of the first term of equation (4.16), with the only exception that each 
w 2 ( r )  line is replaced by the line G 2 ( r ) .  Hence the diagrammatic contributions to 
W,,,, from the second term of (4.16) are obtained in the following way. We take all 
diagrams of the graphical representation of the quantity within the brackets and 
replace in turn each exchange line l ( k ~ r 1 ~ )  and wavefactor l ( n l - m l , r 1 2 )  or l ( n z -  
m l ,  rI2)  by V:f ( k ~ r ~ , )  and V:l(nl - m l ,  rI2)  or V:l(n2-ml, rI2)  respectively. We also 
replace, in turn, each connected pair of lines l ( n l  - m i ,  rlZ)l(kFrIl)  and I(n2- 

ml, rl2)l(kFr11) by 2Vl(n1 -ml ,  r12) * V l l ( k F r I I )  and 2Vll(n2-m1, r12) - V I ~ ( ~ F I I , )  
respectively. Finally we use the dressed lines h h ( r )  and h d ( r )  rather than the bare 
functions w2(r )  and h ( r ) .  

A more elaborate expression for W,, can be obtained using the relation (3.12) 
for N,,,,. 

By substitution of (2.12) and (2.13) into (4.12) the expectation value of H,, may 
be written 

H,,,, = NL,, +N, , [  Wt!, -;( W!!,; + W',',')]+i[H,, +H,,]Nm,. (4.17) 
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Neglecting terms O(N-’) and considering only terms which do not include more than 
one of the single-orbital states m l ,  m2, n l  and n2, the diagonal quantities n may be 
approximated as 

(4.18) 

Hence the first term of (4.17) which is determined as the P derivative of (3.12) takes 
the form 

N L  = {(mlm21NB’(12; 1’2’))nln2), + i [ u ( m l )  + u ( m 2 ) +  u(n l )+  u(n2)]  

n m m  = exp[GY” (P )I = exp[SG(m 1, P )  + SG (m2, P )I. 

x(mlm21NB(12; 1’2’)lnln2)) 

x [ ( I  -K ( m l ) ) ( l  -ZcC(m2))(1 -RC(nl ) ) (1  - L ( n 2 ) ) 1 - ” ~ .  (4.19) 

Similarly for the second term of (4.17) we have 

h2 
N,,[ w:,‘,:, - t( w:!,, + w!,’,,’ )] = - 8m Q:N&, dr2drl 

- Jmn - 
[ ( I  - kcc(ml))( l  - L ( m 2 ) ) ( 1  - L ( n , ) ) ( l  - ZCc(n2))Y2 

Jmn = - j2 V:(mlm2)NB’(12; 1’2‘)lnln2), dr2 dr l .  8m 

(4.20) 

(4.21) 

x [( 1 - L ( m 1 ) I  ( 1 - Z c r  ( m 2 ) ~  1 - ZCC ( n I 1) ( 1 - 2c-r (n 2111.. (4.22) 

where the non-local dressed effective potential WB (12; 1’2’) is defined by the relations 

WB(12; 1’2’)= w:d(12; 1‘2’)+ w:<,(12; 1’2‘) 

+ w;cC(21; 2’1‘)+ w:C,Cc(12; 1’2’)+ w:c,cc(21; 1’27, 

w:~ (12; 1’2‘) = w:~ (I ,  2 ) ~ ( r 1 -  r; )6(r2 - r; 1, 
w:~, (12; 1’2’) = wjCc(12; l r2 ‘ )~ ( r2 - r4 ) .  

(4.23) 

Each diagram contribution to W’(12; 1’2’) contains exactly one line h i ( r ) .  The 
superscript ‘B’ signifies that the diagrams which contribute are basic. The leading 
diagrams which contribute to J,, with no more than two dressed correlation lines are 
shown in figure 6. In figure 6 the first diagram is local, the diagrams of the second 
and third line are generated from the matrix elements of N &  in (4.22) and the 
diagrams of the last two lines are generated from the matrix elements of N&c. 

W%(l ,  2) = N%(l ,  2) = hk(r121, 

The quantities W’(12; 1‘2‘) may be defined as follows: 

w:cc(12; 1’2)=N;Lc(12; 1’2), (4.24) 
B Wrc,cc(12; 1’2‘)= NF&c(12; 1’2’). 
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1 2 

t - - - t  F . - - - l  

Figure 6. Graphical representation of J,,,, which includes only the asymmetric non-local 
diagrams generated from the matrix elements of N”’(12; 1’2’) in equation (4.21) with no 
more than two dressed correlation lines. 

It can be easily shown that in the thermodynamic limit, although the diagonal matrix 
elements of the Hamiltonian and unit operator behave like N and the last term of 

The advantage of this formalism is that matrix elements of the three-body effec- 
tive potential 

The advantage of this formalism is that matrix elements of the three-body effective 
potential 

(4.25) W 3 ( i ; j ,  k)  = (fi2/m)Vi lnf(ij)Vi lnf(ik) 

are not involved in the evaluation of the CBF quantities above. 
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Analogous evaluations of the CBF quantities can be performed using alternative 
forms for the expectation value of the kinetic energy. 

Strict expressions of the diagonal two-body distribution functions g y m  ( r I 2 ) ,  in 
terms of the quantities N:d(12), NZcc(12; 12') and N:c,cc(12; 1'2'), may be obtained 
following the diagrammatic technique which has been developed by Krotscheck (1,379). 

For a state-dependent two-body potential 

(4.26) 

we can apply straightforwardly the KC formalism where 

4 

WZd(l2) = W,,(12) = c w;;(12)0'L1 (4.28) 
1 = 1  

and 

Wyi (12) = h: (1 2), 

W;; (12) = [hd( 12) + 13 Vi"( 12) 

(4.29) 

(4.30) for i = 2,3,4.  

The function hL(12) is determined by (4.8). The generalisation for potentials which 
describe tensor forces is straightforward. 

4.1. Single-particle and hole energies 

Other important quantities which have to be evaluated within the CBF approach are 
the single-particle and single-hole energies (Tan and Feenberg 1968) which are defined 
via 

2e ( k )  = Hj;f22' - H:;', k kF, 

and 

2 ~ ( k ) = H : ; '  -H:fizl, k S kF, 

respectively. Here N = A + 2, A, A - 2 is the number of particles. 
The chemical potential g is defined by the relations 

i A + 2 )  [A-21  2g = Hoo - H$' = HiGI - Hoo . 

The difference (4.31) can be written 

(4.3 1) 

(4.32) 

(4.33) 
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From (4.33) we have 

(4.36) 

with p = & ( k F )  = dHoo/dA. In the thermodynamic limit the calculation of (4.35) for 
a system with A or A * 2  particles does not make any difference, and consequently 
we may drop the N index. 

The single-particle energy is then given by 

E(m,)= h 2 k k z / 2 m  + u ( m , ) +  Wi:,, +aO, k,,,( > kF, (4.37) 

where 

a()= - h 2 k : / 2 m  -U(kF)- W”’(kF)+p. (4.38) 

Similarly the single-hole energy is given by 

.s(m,) = h2kk,/2m - u ( m , ) -  W‘’’(m,)+a0,  km, kF, (4.39) 

(4.40) 

Here w ” ’ ( k F )  = ~ & ‘ / 2 .  
Finally a combination of equations (4.31)-(4.33) yields the relation 

H t A * 2 )  in m - H;$+21 = 2 1 ~ ( k )  -p i .  (4.41) 

5. Discussion 

In this work we have developed an elaborate formalism for the evaluation of such 
quantities as W,,,, Hmm -H,,,, and the single-particle/hole energies E(k,, ,  ). These CHF 

quantities are the ingredients in terms of which certain perturbation corrections to 
the matrix elements of the Hamiltonians-based on the method of correlated basis 
functions-are expressed. Their accurate evaluation is achieved by incorporating the 
FHNC scheme for the massive resummation of their cluster contributions. Adopting 
the KR-FHNC scheme, the maintenance of the Fermi cancellations at every stage of 
the development may be achieved by keeping all diagrams with the same number of 
correlation lines and different number of particles. 

The matrix elements Nmn and Wmn are evaluated in a first approximation within 
the FR-FHNC scheme, neglecting the non-local Ndcc(12; 1’2‘1, N~.c.cc(12; 1‘2’1, 
Wdcc(12; 1’2‘) and Wcc.cc(12; 1’2’) contributions, or within the KR-FHNC scheme, keep- 
ing local and non-local contributions with no more than two dressed correlation lines. 

Although we have concentrated on correlated states differing only in two single- 
particle states, our formalism can be generalised by considering states which differ in 
a higher number of single-particle states. 

An extension of the CBF formalism, to allow a realistic treatment of systems like 
neutron and nuclear matter, requires a highly state-dependent correlation operator 
F. Calculations within the FHNC schemes which incorporate a highly state-dependent 
operator appears not to be an easy task. A first approach in this direction is achieved 
employing an appropriate statedependent correlation operator which can be manipu- 
lated using simple functions, which will represent partial summations of an infinite 
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number of diagrams. In the case of liquid 'He the situation is simpler because the 
two-body potential is state independent and a simple state-dependent correlation 
operator (Schmidt and Pandharipande 1979, Owen 1979a, Wiringa and Pand- 
haripande 1978) can be applied without great difficulty. The formalism developed in 
this paper has been applied by us to the analysis of P-wave pairing in liquid 'He 
(Hatzikonstantinou and Irvine 198 1). 
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